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Manifold-Microchannel Coolers 
for High Heat Flux Power Electronics

• Manifold-Microchannel coolers can be embedded directly into the 
substrate or chip to provide localized heat removal at high volumetric 
rates1 from the backside of active ICs and power electronic devices.

• These coolers take many forms. For example single vs. two-phase, silicon 
vs. ceramic substrates and different alloys, filter size, working fluid, fluid 
velocity, and temperature.

• They are used to overcome thermal limits that can 
cause power electronic devices to operate at voltages 
and currents below their inherent electrical limits.

• No “one-size-fits-all” reliability solution.

Rogers Corp. curamik ®Coolers. 3

3D rendering of Si 
microchannel cooler2
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Reliability Aspects of MCCs
Erosion:  Entrained particles impinge on the walls altering channel 
geometry and generating particulates.

Corrosion:  Relatively uniform dissolution of material into solution, and 
formation of brittle oxide layers. 

Clogging/fouling: Entrained particles become attracted to channel 
surfaces.  Layers of particles form eventually leading to full blockage.

Erosion-corrosion phenomena 5
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Specific Design Studied
• Force Fed Microchannel Heat Exchanger (FFMHX) design4.   Series of parallel 

microchannels with perpendicularly oriented manifold to distribute flow.

• Micro-grooved surface is manufactured in 
single-crystal Silicon Carbide (SiC).

Design of FFMHX with integrated manifold4

Domain of erosion 
simulations
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CFD Erosion Simulations: Introduction
• Widely used in the Oil & Gas industry 10-12.

• Conducted in three primary steps:

1) Numerically compute flow field

2) Calculate particle trajectories

3) Model particle-wall interactions (erosion equation)

Computation of flow field 
using commercial CFD Code

Coupling particle 
trajectories to flow field

Generation of erosion contours based 
on particle-wall interaction equation
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Particle Erosion Modeling
Particle erosion models of single-crystal silicon were used 
for preliminary modeling purposes. An inlet velocity of 4 m/s 
(single-phase fluid) was assumed to determine to effect of 
particle size and concentration on the erosion rate. 

6

∆𝑊 = 𝐴 𝑉𝑠𝑖𝑛 𝜃 − 𝑉𝑜
𝑛 𝐷 − 𝐷𝑜

𝑚

Routbort and Scattergood13-15

Accelerated ConditionOperational Condition
100 nm particles  
0.01% conc.

1mm particles 1% 
conc.

Units in
mm/yr.

Manifold fluid 
outlet

Manifold
fluid 
inlet

Manifold
boundary

Manifold
fluid 
inlet

Manifold fluid 
outlet

Manifold
boundary

V0 and D0 assumed to be equal to 0.
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Challenges in Modeling Erosion using CFD
Particle erosion models developed using “sandblasting” tests.

– Significantly higher velocities and particle sizes than those present in 
microchannel cooling loops. Slurry erosion tests seldom include particles in 
the single-micron/submicron regime.

– Effect of particle-induced “squeeze-film” is neglected as sandblasting tests 
are performed in air. 

– Difficult to capture particle-induced viscous dampening as particle 
approaches wall16. Requires two-way particle-fluid coupling. Very 
computationally expensive, difficult to achieve convergence.

Can erosion models calibrated for larger particles and velocities be used to predict 
erosion in microchannel coolers?

Literature suggests the existence of threshold particle and velocities under which no 
erosion will occur. Will this hold true over 102, 103… 106 hours?
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Slurry Erosion Test Apparatus

8

• Gain insight into the removal mechanism of the various materials involved in 
microchannel coolers.

• Determine and calibrate model to predict erosion in microchannel coolers. 
Determine threshold velocities and particle diameters.

Factor Ranges to be Considered
Velocities: 5 – 60 m/s
Particle sizes: 0.1 – 25 μm
Particle conc: 0 - 5 (% mass)
Impingement angles: 0 - 90 °
Particulate: SiC, Alumina, Steel

SLURRY
PUMP

MOTOR

NOZZLE

SAMPLE 
HOLDER

SLURRY 
RESERVOIR

Polished Si soldered to Cu TESTING IN PROGRESS
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Fundamentals of Fouling/Clogging

Van Der Waals Force (Fvdw): 
Attractive force between particles or 
particle to wall. Largely a function of pH 
and electrolyte concentration.

Clogging Mechanisms16

Forces involved in particulate clogging 17

Electric Double Layer Force (Fedl): 
Repulsion force due to the surface charges 
on the particles and wall. Largely a 
function of particle size and zeta potential. 

Hydrodynamic Forces incl. Gravity (FL, FG): 
Responsible for bringing particle close to the 
wall or lifting particles away from the wall.

Fouling/Clogging phenomena 
occurs when net attractive forces 

overcome net repulsive forces.
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Clogging of microchannels
• Previous studies have shown that particulate build-up and clogging within the 

microchannels are not likely to occur.

• Major location of fouling is within header/manifold region due to the lower 
shear stress and abrupt changes in flow direction as fluid enters channels. 

• One of the best ways to control particle agglomeration and build-up is by 
adjusting pH and very stringent particle filtering controls (e.g. less than 0.5μm). 

Adjusting pH or using a small filter may not be ideal for the application 

Fouling occurs in the manifold while 
clogging occurs at the channel entrances 19 

Particulate formations on the fin surfaces 
connect to block the channel entrance18 
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Experimental Clogging Test Setup

• Investigating major factors contributing 
to clogging of microchannel coolers 
including particle size, concentration, 
pH, velocity, particulate material.

• Identify how various manifold designs 
impact clogging

Schematic of test setup to 
investigate clogging in 

microchannels
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Design of Clogging Test Section

Silicone rubber pads 
to protect 
microchannel fixture

1.5cm x 3cm silicon 
microchannel fixture

Transparent glass plate 
anodically bonded to 
microchannel fixture creating top 
of channels

Transparent polycarbonate cover 
plate. Compression will seal the 
microchannel fixture to manifold.

Pressure ports for differential 
pressure reading

Inlet

Outlet
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Concluding Remarks
Particle Erosion:

• Likely to be a concern for Si microchannels after 105 hours of operation.

• Extension of model to SiC with small particles and low flow rates must be 
validated.

• Slurry erosion test apparatus constructed to determine threshold particle size 
and velocities for microchannel cooler materials.

• Will gain insight into material removal mechanisms and establish most 
appropriate erosion model for microchannel coolers.

Clogging/Fouling Experiment:

• Test setup designed to investigate major factors contributing to clogging/fouling 
in microchannel coolers.

• Study how different manifold structures affect propensity for clogging.

Designing reliability into microchannel designs
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